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Abstract

This paper introduces a generic artificial viscosity method based on diffusing along iso-values (curves in 2D and

surfaces in 3D). The construction and a study of properties of the method are presented. Application to FEM for the

Euler and Navier–Stokes equations is established. The performance of the proposed method is demonstrated through

numerical tests and comparison to other classical methods.
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1. Introduction

Numerical instability is one of the most serious problems encountered when dealing with the dis-

cretization of PDEs, especially convection type and fluid flow problems. These undesired but inherent

numerical oscillations are present in finite difference [1], finite element [2,3], finite volume methods [4], as

well as meshless procedures [5,6]. A plethora of methods have been proposed to overcome oscillations and

odd-even decoupling of the Euler and Navier–Stokes equations, among them the classical upwind

methods (CU) [1,2,7,8], the Streamline Upwind methods (SU) [9], and the Streamline Upwind Petrov–
Galerkin (SUPG) methods [9]. The challenge is to enhance the stability of a scheme without smearing

discontinuities (such as shocks) or diffusing boundary layers. These methods are based on adding artificial

diffusion via an operator, or equivalently by an appropriate change of weighting functions, a useful

strategy to preserve the consistency of the scheme at each time step and not only at the limit state.

Regardless of the manner in which artificial viscosity is introduced, the main distinction between the
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methods is in the way that the diffusion is oriented. For instance, CU diffuses in all directions, and hence

introduces excessive diffusion perpendicular to the flow direction. SU and SUPG methods overcome this

shortcoming, as the diffusion is made to act only in the streamline or flow direction. The original version

of SUPG method suffered some instabilities when dealing with shocks, and a ‘‘discontinuity-capturing

operator’’ was added to establish more control in the solution gradient direction. However, since

streamlines are usually perpendicular to shocks, this method smears the discontinuities, if optimality of

the diffusion amplitude is not reached.

In summary, one could group methods into two categories: directional and non-directional diffusion
methods. To determine the optimal value of the diffusion is a very hard task and unfortunately this is

necessary to obtain accurate results if the diffusion is not correctly oriented like in SU/SUPG methods

where, as mentioned above, the streamlines (the direction of the diffusion) cross the discontinuities.

Moreover, the diffusion values are specific to each problem. To avoid smearing discontinuities and

boundary layers by excessive values of diffusion, a method must diffuse tangentially to discontinuities and

boundary layers. This motivates our choice to take iso-value surfaces (or curves in 2D) as a direction of

diffusion since iso-values are tangent to the shock direction and to boundary layers. Therefore, the

smoothing effect along iso-values ensures the stability of the numerical scheme, while avoiding the negative
or cross-diffusion effects of classical artificial viscosity methods.

This paper is divided in the following manner; in Section 2 the construction and study of some properties

of the ISOD operator are developed. In Section 3 an application to FEM for the Euler and Navier–Stokes

equations, using P 1-elements, is studied. Through numerical tests, the effectiveness of the new method is
demonstrated and comparisons to other methods are shown in Section 4. We conclude in Section 5.

2. The isovalue-oriented diffusion artificial viscosity model (ISOD): construction and some properties

In this section we first give a definition of the proposed isovalue-oriented diffusion operator, referring to

it by Disod. We then give an analytical expression of the operator. We finally prove a lemma and a prop-
osition that justify the label ‘‘iso-values’’ oriented diffusion.

Definition 2.1. Let Q be a C1 given scalar function defined on an open set X of R3, we define the iso-values

oriented diffusion operator DisodQ as the diffusion operator in the plane orthogonal to the gradient of Q,
that is,

DisodQ ¼ D g1
!Qþ D g2

!Q; ð1Þ

where ðrQ
��!

; g1
!; g2

!Þ forms a normalized orthogonal reference system on each point of X.

Now let us give the analytical expression of the operator DisodQ. Using the fact that the Laplacian op-
erator is invariant under rotation, and the fact that the reference system ðrQ

��!
; g1
!; g2

!Þ could be obtained by
rotating the canonical reference system ðe1; e2; e3Þ, we have:

D g1
!Qþ D g2

!Qþ D~ffQ ¼ DQ; ð2Þ

where

~ff ¼ rQ:

Thus

DisodQ ¼ D g1
!Qþ D g2

!Q ¼ DQ� D~ffQ: ð3Þ
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The expression of D~ffQ is given by:

D~ffQ ¼
X3
i;j¼1

ki;jðQÞoxioxjQ; ð4Þ

where:

ki;jðQÞ ¼
ðoxiQÞðoxjQÞ

ðox1QÞ
2 þ ðox2QÞ

2 þ ðox3QÞ
2
:

Let us now justify the link between the definition of ISOD operation and the iso-value surfaces. The fol-

lowing proposition proves that the orthogonal plane to the gradient is tangent to the iso-value surfaces.

Lemma 2.1. Let f be a function defined on an open set X of R3, and ðx0; y0; z0Þ a given point of X. We have the
following result: rf ðx0; y0; z0Þ is orthogonal to the iso-values tangent plane defined by f ðx; y; zÞ ¼ f ðx0; y0; z0Þ
at the point ðx0; y0; z0Þ.

Proof. Let R be the iso-values surface defined by f ðx; y; zÞ ¼ f ðx0; y0; z0Þ. Assuming that rf ðx0; y0; z0Þj j 6¼ 0,
then we can suppose that oz0f 6¼ 0 for instance. According to the implicit theorem functions, there exists a
function u 2 C1, defined on a neighborhood # of ðx0; y0Þ, such that:

z ¼ uðx; yÞ 8ðx; yÞ 2 #

and the surface ðz;uðx; yÞÞ belongs to R. One can verify that the vectors m1 ¼ ð1; 0; oxuðx0; y0ÞÞ, and
m2 ¼ ð0; 1; oyuðx0y0ÞÞ, generate the tangent plane to this surface at the point ðx0; y0Þ. On the other hand, the
gradient of u is given by:

oxu
oyu

� �
¼ �ðozf Þ�1

fx
fy

� �

and we obtain:

ð1; 0; oxuÞ ¼ ð1; 0;�ðozf Þ�1oxf Þ

and

ð0; 1; oyuÞ ¼ ð0; 1;�ðozf Þ�1oyf Þ:

By computing the dot product, we verify that ðoxf ; oyf ; ozf Þ is orthogonal to both m1 and m2, which com-
pletes the proof. �

This lemma proves that Disod operator diffuses along the iso-values only. Now, let us see the local be-
havior of such viscosity. Consider a locally evolving iso-value surface (or curve) along a small time step of a

given function that satisfies a diffusion equation with the ISOD operation. We propose to derive the dif-

fusion model induced by the ISOD operator on the iso-values surfaces.

Proposition 2.1. Let f be a function satisfying the iso-value oriented diffusion problem (i.e. a diffusion problem
with ISOD as a diffusion operator). Thus, locally, the iso-values satisfy an anisotropic diffusion equation.

Proof. For simplification purposes, the proof is carried out for the two-dimensional case. Let f be a function
satisfying the ISOD diffusion problem, that is
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otf ðt; x; yÞ � DISODf ¼ 0; ðt; x; yÞ 2 0; T½  � X;
ð0; x; yÞ ¼ f0ðx; yÞ; f 2 L2ðXÞ:

�
ð5Þ

Let ðt0; x0; y0Þ a given point of 0; T½  � X, there exists a function uðt; xÞ (implicit functions theorem) defined
on a neighborhood # of ðt0; x0; y0Þ such that

f ðt; x;uðt; xÞÞ ¼ f ðt0; x0; y0Þ 8ðt; xÞ 2 #:

The time and space derivatives are given by:

otu ¼ � 1

oyf

� �
otf ð6Þ

and

oxu ¼ � 1

oyf

� �
oxf : ð7Þ

Now we can compute the second derivative o2x2u:

o2x2u ¼ �
oyf o2x2f þ oyxf oxu
� �

� oxf oxyf þ o2y2f oxu
h i

ðoyf Þ2

¼ �
oyf o2x2f � oyxf

oxf
oy f

h i
� oxf oxyf � o2y2f

oxf
oy f

h i
ðoyf Þ2

¼ � 1

oyf

ðoyf Þ2o2x2f � 2oxf oyf oxyf þ ðoxf Þ2o2y2f
h i

ðoyf Þ2

¼ � 1

oyf
1

 
þ oxfð Þ2

oyf
� �2

! ðoyf Þ2o2x2f � 2oxf oyf oxyf þ ðoxf Þ2o2y2f
h i

ðoxf Þ2 þ ðoyf Þ2

¼ � 1

oyf
1

 
þ oxfð Þ2

oyf
� �2

!
ðDISODf Þ: ð8Þ

using (5)–(7) we obtain:

o2x2u ¼ � 1

oyf
1
�

þ ðoxuÞ2
�
otf ;

and finally we achieve

otu � 1

ð1þ ðoxuÞ2Þ
o2x2u ¼ 0:

We conclude that u satisfies an anisotropic diffusion equation and that the diffusion is proportional to the
inverse of the gradient. �
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3. Application to FEM for Euler and Navier–Stokes equations

Here, we formulate the ISOD artificial viscosity for FEM in the case of the Navier–Stokes equations, the

Euler equations being considered a subset.

Let the Navier–Stokes equations in conservative form be:

otU þr:F ðUÞ � r:GðU ;rUÞ ¼ S: ð9Þ

Consider these equations, with the ISOD artificial viscosity term added,

otU þr:F ðUÞ � r:GðU ;rUÞ � eDISODU ¼ S; ð10Þ

e being a scalar viscosity coefficient that tends to zero. We do not emphasize the computation of this co-
efficient since it is not the goal of the paper. For the numerical tests we took the classical coefficient used for

SU method.

To get a weak formulation of the ISOD operator for FEM that uses only shape functions of order one,

some assumptions are needed. After a global reconstruction of the gradient, we consider a diffusion along

the perpendicular plane to an average value of the gradient at each element. The transmission term between

cells are neglected.

To proceed with the finite element discretization of the Navier–Stokes equations, a semi-discrete for-
mulation and the classical corresponding approximation spaces are considered. Let #h be the trial solution

space

#h ¼ v=vð:; tÞ 2 H 1ðXÞm; t 2 0; T½ ; v=Xe
2 PkðXeÞm; vð:; tÞ

�
¼ g on Cg

�
ð11Þ

and xh the weighting function space

xh ¼ w=wð:; tÞ 2 H 1ðXÞm; t 2 0; T½ ; v=Xe
2 PkðXeÞm;wð:; tÞ

�
¼ 0 on Cg

�
; ð12Þ

note that in our case k ¼ 1.
The weak formulation of Eq. (6) is then given by:
Find V 2 #hZ

X
ðW :Vt �rW :F ðV Þ þ rW :GðV ;rV Þ þ W :SÞdX �

Z
C
W ð�F ðV Þ þ GðV ;rV ÞÞ:~nndC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NS term

þ
X
e

Z
Xe
rW :ðBerV ÞdX �

Z
oXe\C

W ðBeV Þ:~nndC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ISOD viscosityterm

¼ 0 8W 2 xh;

where

Be
g ¼ eðI � AgÞ;

and

AgðV Þ ¼
k1;1ðV Þ k1;2ðV Þ k1;3ðV Þ
k2;1ðV Þ k2;2ðV Þ k2;3ðV Þ
k3;1ðV Þ k3;2ðV Þ k3;3ðV Þ

0
@

1
A;

the subscript g designates the global reconstructed derivatives, as opposed to local derivatives.
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In practice, we observe that by adding a term that diffuses in the direction of the gradient (similar to the

discontinuities-capturing term introduced by Hughes [5] for SUPG) during just the first few iterations, the

scheme becomes more robust. This is probably due to the simplifications we did to obtain a weak for-

mulation using only P 1-elements, such a term is not needed if higher order shape functions are used.

Consequently, the tensor Be
g is rewritten as:

Be
g ¼ e ð1

�
� aÞðI � AgÞ þ aAg

�
: ð13Þ

The coefficient a is taken positive during just a few iterations and then set to zero.

Remark. For the FEM we used an implicit formulation, so the tensor Be
gðV Þ is estimated at time step n when

we compute for V nþ1. This linearization makes sense since we diffuse along the iso-values of the solution at a

given time step to prevent oscillations of the next time step.

Lemma 3.1. Be is a positive semi-definite matrix on X, 8e, aP 0.

Proof. To prove Lemma 3.1 it suffices to prove that both matrices Ag and I � Ag are positive semi-definite.

Noting that these matrices can be decomposed in the following manner:

Ag ¼ A1At
1;

I � Ag ¼ CCt;

where

A1ðUÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoxUÞ2 þ ðoyUÞ2 þ ðozUÞ2

q oxU 0 0

oyU 0 0

ozU 0 0

0
@

1
A

and

CðUÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoxUÞ2 þ ðoyUÞ2 þ ðozUÞ2

q 0 �oyU �ozU
ozU oxU 0

�oyU 0 oxU

0
@

1
A:

This completes the proof. �

4. Numerical results

The proposed artificial viscosity is implemented, using the formulation developed in Section 3, in a 3D

Euler/Navier–Stokes code, FENSAP (Finite Element Navier–Stokes Package). Here, we refer to each

particular artificial viscosity model used in FENSAP as FENSAP-CU, FENSAP-SU, and FENSAP-ISOD,
for classical upwind (CU), streamline upwind (SU), or ISOD, respectively.

First, let us see the behavior of the ISOD viscosity compared to the classical (CU) and streamlines

(SU) upwind methods in the presence of numerical noise (non-physical oscillations due to the instability

of the numerical method). In other words, examine the ability of each artificial viscosity to eliminate

such noise without smearing shocks. Fig. 1 shows a noisy Euler solution over a NACA0012 at

Mach¼ 0.85, at a 0� Angle of Attack (AoA). This solution is considered as the initial condition of a
purely diffusive equation using the diffusion operator of each method. Taking the same amount of
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Fig. 1. Comparison of the diffusion effect around discontinuities between CU, SU, and ISOD method. (a) The initial data: Mach

profile for inviscid transonic flow around NACA0012: Mach¼ 0.85, AoA¼ 0�, (b) diffusion solution for CU method, (c) diffusion

solution for SU method, (d) diffusion solution for ISOD method.

L. Remaki et al. / Journal of Computational Physics 186 (2003) 279–294 285



viscosity, and after ten iterations in time, the figures show that the classical and streamline methods are

highly diffusive (with less diffusion for the SU), removing the noise but with the shock quite smeared.

The ISOD method shows, as expected, a greater ability to remove noise with a high quality of shock

preservation, due to the diffusion over iso-surfaces that are parallel to the shock direction. In addition,
note that for the classical rotating cone problem, the ISOD method is expected to give quite similar

results to SU (or SUPG) methods since the streamlines are parallel to the iso-values lines for this

test case.

Figs. 2(a)–(d) and 3(a)–(f) show, respectively, a 3D transonic Euler solution over a NACA0012 at

Mach¼ 0.85, AoA¼ 1�, and a laminar supersonic solution around a NACA0012 at Mach¼ 2, AoA¼ 0�
and Reynolds number¼ 500. The grids used are shown in the figures; a non-adapted grid with no grid
clustering in the anticipated shock locations is used for the Euler solution, whereas an adapted grid is used

for the laminar solution because it is somewhat difficult to get a good supersonic laminar solution on a
coarse non-adapted mesh. Moreover, for all methods the coefficients proposed for SU (or SUPG) in [9] are

used, multiplied by a coefficient e that decreases to zero in order to get consistency at the limit. For the
ISOD method the coefficient a is set to 0.5 at the beginning and decreased to zero after 50 iterations, by
steps of 0.1. In Figs. 2(a)–(d), the density and Mach number profiles are shown, including the contours on

Fig. 2. Comparison of inviscid transonic flow around NACA0012 for the CU, SU, and ISOD methods. (a) Density and Mach solution

for inviscid transonic flow around NACA0012: results using FENSAP-CU. Mach¼ 0.85, AoA¼ 1�, (b) density and Mach solution for
inviscid transonic flow around NACA0012: results using FENSAP-SU. Mach¼ 0.85, AoA¼ 1�, (c) density and Mach solution for
inviscid transonic flow around NACA0012: results using FENSAP-ISOD. Mach¼ 0.85, AoA¼ 1�, (d) Mach profile comparison: CU/
ISOD and SU/ISOD.
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the wall (second figures on the right). One can appreciate the improved results when using the FENSAP-

ISOD solver. Indeed, the noise in the FENSAP-CU and FENSAP-SU results is removed and the shock

position is corrected. The density and Mach number are depicted in Figs. 3(a)–(f). It can again be noted

that the results obtained with FENSAP-ISOD are noise-free and that the oblique shock is sharper and that
the boundary layer is thinner.

In terms of CPU time, note that ISOD algorithm is a bit more complex than CU and SU algorithms

since we need to compute the reconstructed gradient. However, and since solution features like shocks,

expansion discontinuities and boundary layers are captured earlier, the steady state is reached within fewer

iterations. Consequently, the ISOD CPU time is lower than other methods as shown in Table 1 for the

transonic Euler test case described above. Note that the tests are run in parallel on a 4_CPU machine.

Since the use of ISOD helps in capturing discontinuities faster, Figs. 4(a)–(c) confirm the expectation

that, for solutions that need mesh adaptation, the number of adaptation-solution cycles is sensibly reduced.
The figures show the Mach profile of a supersonic flow on a NACA0012 wing at Mach 2, AoA¼ 0� and
Reynolds number¼ 2000. Good results are obtained after only 4 cycles of adaptation when using FEN-
SAP-ISOD (Fig. 3(b)), while 7–9 cycles of adaptation are necessary to achieve comparable convergence

with FENSAP-CU and FENSAP-SU (Fig. 3(c)).

Finally, in order to show that ISOD is suitable to a wide range of problems, we apply the method to

two turbulent cases. The one-equation Spalart–Allmaras (S–A) model is selected first to predict the

velocity profiles for turbulent flow over a flat-plate at Reh ¼ 10000. The skin friction coefficient predicted

Fig. 2. (continued)
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Fig. 2. (continued)
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Fig. 3. Comparison for supersonic laminar flow around NACA0012 for the CU, SU, and ISOD methods. (a) Density profile of

supersonic laminar flow around NACA0012; solution using FENSAP-CU, (b) density profile of supersonic laminar flow around

NACA0012; Solution using FENSAP-SU, (c) density profile of supersonic laminar flow around NACA0012; solution using FENSAP-

ISOD, (d) Mach profile of supersonic laminar flow around NACA0012; solution using FENSAP-CU, (e) Mach profile of supersonic

laminar flow around NACA0012; Solution using FENSAP-SU, (f) Mach profile of supersonic laminar flow around NACA0012;

Solution using FENSAP-ISOD.
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with FENSAP-ISOD in this test case is cf ¼ 0:00262, which corresponds to the value adopted to cali-
brate the S–A model at Reh ¼ 10000. The velocity profile in inner coordinates uþ ¼ f ðyþÞ is shown in
Fig. 5. The logarithmic curve clearly shows that the profile obtained agrees well with both measurements

Fig. 3. (continued)

Table 1

CPU time and time-iteration number comparison for transonic Euler solution over a NACA0012 (Test case of Figs. 2a–d)

CPU time/min Number of iterations

FENAP-CU 19 300

FENAP-SU 17 250

FENAP-ISOD 14 200
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[10] and the law of the wall. The second test case models a turbulent flow in a rough pipe. The velocity

gradient near a rough pipe wall is less steep than that near a smooth one, as can been seen in Fig. 6, in

which the velocity ratio u/U (U maximum velocity) obtained with FENSAP-ISOD using S–A has been

plotted against the distance ratio y/R (R radius of the pipe) for a smooth and for several rough pipes. All

Fig. 4. (a) Mach solution on original grid: Mach ¼ 2., Re¼ 2000, A0A¼ 00, (b) Mach solution after 4 cycles of adaptations:
Mach¼ 2., Re¼ 2000, A0A¼ 0�, (c) FENSAP-CU and FENSAP-SU Mach solutions after 7 and 9 cycles of adaptations, respectively.
Mach¼ 2., Re¼ 2000, A0A¼ 0�.
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have been compared to the measurements [11] and demonstrate the agreement of FENSAP-ISOD with

experimental data.

5. Conclusions

We have proposed in this paper a new artificial viscosity model based on diffusion along the iso-

values. This permits eliminating solution noise and ensuring stability without smearing discontinuities
such as shocks. Some properties of the new method (referred to as ISOD) are formally derived and

the efficiency of the method is shown through 3D numerical test cases for inviscid, laminar, and

turbulent cases. A comparison with classical methods is also made. In addition to the improve-

ment of the quality of the results, the proposed method also reduces the number of iterations

necessary to reach the steady state as well as the number of cycles of mesh adaptation, if and when

used.

Note that as viscous coefficients of the new method, we have used those proposed in the literature for SU

(and SUPG) methods, scaled by a coefficient e that decreases to zero during iterations to get consistency at
the limit. As future work, it is planned to determine the optimal viscous coefficients for the proposed

method. The use of higher order shape functions should also improve the accuracy and the robustness of

the method through the estimation of the high order derivatives that were neglected in order to obtain the

formulation of Section 3.

Fig. 4 (continued)

292 L. Remaki et al. / Journal of Computational Physics 186 (2003) 279–294



References

[1] S.V. Patankar, in: W.J. Minkowycz, E.M. Sparrow (Eds.), Numerical Heat Transfer and Fluid Flow (Series in Computational

Methods in Mechanics and Sciences), Hemisphere, Washington, 1980.

[2] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, McGraw Hill, vol. I; 1989, vol. II, 1991.

[3] C. Hirsch, Numerical computations of Internal and External Flow, Wiley, vol. 1, 1988; vol. 2, 1990.

[4] S. Idelsoh, E. Onate, Finite element and finite volumes. Two good friends, Int. J. Numer. Methods Eng. 37 (1994) 3323–3341.

[5] E. Onate, S. Idelsohn, O.C. Zienkiewicz, R.L. Taylor, A finite point method in computational mechanics, application to

convective transport and fluid flow, Int. J. Numer. Methods Eng. 39 (1966) 3839–3866.

Fig. 5. Velocity profiles in a flat-plate boundary layer at Reh ¼ 10000 using FENSAP-ISOD on the Spalart–Allmaras one-equation
model.

Fig. 6. Velocity profiles distribution in rough pipes, after Nikuradse [10].

L. Remaki et al. / Journal of Computational Physics 186 (2003) 279–294 293



[6] E. Onate, S. Idelsohn, O.C. Zienkiewicz, R.L. Taylor, C. Sacco, A stabilized finite point method for fluid mechanics, Comp.

Methods Appl. Mech. Eng. 139 (1996) 316–346.

[7] A.J. Baker, Finite Element Computational Fluid Mechanics, Taylor and Francis, NY, 1983.

[8] J.C. Heinrich, P.S. Huyakorn, O.C. Zienkiewicz, A.R. Mitchell, ‘‘An upwind’’ finite element scheme for two-dimensional

convective transport equation, Int. J. Num. Mech. Eng. 11 (1977) 131–143.

[9] A.N. Brooks, T.J.R. Hughes, Streamlines Upwind/Petrov-Galerkin formulation for convective dominated flows, with particular

emphasis on the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Eng. 32 (1982) 199–259.

[10] D.E. Coles, E.A. Hirst, Computation of Turbulent Boundary Layers-1968 AFOSR IFP-Stanford Conference, vol. II, Stanford

Univ. Press, Stanford, CA, 1969.

[11] H. Schlichting, in: Boundary-Layer Theory, sixth ed., McGraw-Hill, New York, 1968, p. 581, Chapter 20.

294 L. Remaki et al. / Journal of Computational Physics 186 (2003) 279–294


	ISOD - an anisotropic isovalue-oriented diffusion artificial viscosity for the Euler and Navier-Stokes equations
	Introduction
	The isovalue-oriented diffusion artificial viscosity model (ISOD): construction and some properties
	Application to FEM for Euler and Navier-Stokes equations
	Numerical results
	Conclusions
	References


